NATURAL LANGUAGE INFORMATION RETRIEVAL: TREC-4 REPORT

Tomek Strzalkowski
GE Corporate Research & Development
P.O. Box 8
Schenectady, NY 12301
tomek@thuban.crd.ge.com

Jose Perez Carballo!
Courant Institute of Mathematical Sciences
New York University
715 Broadway, rm. 704
New York, NY 10003
carballo@cs.nyu.edu

ABSTRACT

In this paper we report on the joint GE/NYU natural
language information retrieval project as related to the
4th Text Retrieval Conference (TREC-4). The main
thrust of this project is to use natural language process-
ing techniques to enhance the effectiveness of full-text
document retrieval. During the course of the four
TREC conferences, we have built a prototype IR sys-
tem designed around a statistical full-text indexing and
search backbone provided by the NIST’s Prise engine.
The original Prise has been modified to allow handling
of multi-word phrases, differential term weighting
schemes, automatic query expansion, index partitioning
and rank merging, as well as dealing with complex
documents. Natural language processing is used to (1)
preprocess the documents in order to extract content-
carrying terms, (2) discover inter-term dependencies
and build a conceptual hierarchy specific to the data-
base domain, and (3) process user’s natural language
requests into effective search queries. The overall
architecture of the system is essentially the same as in
TREC-3, as our efforts this year were directed at
optimizing the performance of all components. A not-
able exception is the new massive query expansion
module used in routing experiments, which replaces a
prototype extension used in the TREC-3 system. On the
other hand, it has to be noted that the character and the
level of difficulty of TREC queries has changed quite
significantly since the last year evaluation. TREC-4
new ad-hoc queries are far shorter, less focused, and
they have a flavor of information requests (What is the
prognosis of ...) rather than search directives typical for

earlier TRECs (The relevant document will contain ...).
This makes building of good search queries a more
sensitive task than before. We thus decided to intro-
duce only minimum number of changes to our indexing
and search processes, and even roll back some of the
TREC-3 extensions which dealt with longer and some-
what redundant queries (e.g., locality matching?).
Overall, our system performed quite well as our posi-
tion with respect to the best systems improved steadily
since the beginning of TREC. It should be noted that
the most significant gain in performance seems to occur
in precision near the top of the ranking, at 5, 10, 15
and 20 documents. Indeed, our unofficial manual runs
performed after TREC-4 conference show superior
results in these categories, topping by a large margin
the best manual scores by any system in the official
evaluation.

INTRODUCTION

A typical (full-text) information retrieval (IR)
task is to select documents from a database in response
to a user’s query, and rank these documents according
to relevance. This has been usually accomplished using
statistical methods (often coupled with manual encod-
ing) that (a) select terms (words, phrases, and other
units) from documents that are deemed to best
represent their content, and (b) create an inverted index

2 This turned out to be a mistake, as we explain later in this
paper.

1 Current address: School of Communication, Information and Library Studies, Rutgers University, New Brunswick, NJ 08903

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
NOV 1995 2. REPORT TYPE 00-00-1995 to 00-00-1995
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Natural Language Information Retrieval: TREC-4 Report £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
GE Corporate Research & Development,PO Box REPORT NUMBER
8,Schenectady,NY,12301

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Fourth Text Retrieval Conference (TREC-4), Gaithersburg, MD, November 1-3, 1995

14. ABSTRACT

In this paper wereport on thejoint GE/NYU natural language information retrieval project asrelated to
the 4th Text Retrieval Conference (TREC-4). The main thrust of this project isto use natural language
processing techniques to enhance the effectiveness of full-text document retrieval. During the cour se of the
four TREC conferences, we have built a prototype | R system designed around a statistical full-text
indexing and sear ch backbone provided by the NI ST?s Prise engine. The original Prise has been modified
to allow handling of multi-word phrases, differential term weighting schemes, automatic query expansion,
index partitioning and rank merging, aswell as dealing with complex documents. Natural language
processing isused to (1) preprocess the documentsin order to extract content-carrying terms, (2) discover
inter-term dependencies and build a conceptual hierar chy specific to the database domain, and (3) process
user ?s natural language requestsinto effective search queries. The overall architecture of the system is
essentially thesameasin TREC-3, asour effortsthisyear were directed at optimizing the perfor mance of
all components. A notable exception isthe new massive query expansion module used in routing
experiments, which replaces prototype extension used in the TREC-3 system. On the other hand, it hasto
be noted that the character and the level of difficulty of TREC queries has changed quite significantly since
thelast year evaluation. TREC-4 new ad-hoc queriesarefar shorter, lessfocused, and they have a flavor of
infor mation requests (What isthe prognosisof ...) rather than search directivestypical for earlier TRECs
(The relevant document will contain ...). This makes building of good sear ch queries a mor e sensitive task
than before. We thus decided to introduce only minimum number of changesto our indexing and search
processes, and even roll back some of the TREC-3 extensions which dealt with longer and somewhat
redundant queries (e.g., locality matching2). Overall, our system performed quite well asour position with
respect to the best systemsimproved steadily since the beginning of TREC. It should be noted that the most
significant gain in performance seemsto occur in precision near thetop of theranking, at 5, 10, 15 and 20
documents. I ndeed, our unofficial manual runs performed after TREC-4 confer ence show superior results
in these categories, topping by alarge margin the best manual scores by any system in the official
evaluation.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 14
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

file (or files) that provide an easy access to documents
containing these terms. A subsequent search process
will attempt to match preprocessed user queries against
term-based representations of documents in each case
determining a degree of relevance between the two
which depends upon the number and types of matching
terms. Although many sophisticated search and match-
ing methods are available, the crucial problem remains
to be that of an adequate representation of content for
both the documents and the queries.

In term-based representation, a document (as well
as a query) is transformed into a collection of weighted
terms, derived directly from the document text or
indirectly through thesauri or domain maps. The
representation is anchored on these terms, and thus
their careful selection is critical. Since each unique
term can be thought to add a new dimensionality to the
representation, it is equally critical to weigh them prop-
erly against one another so that the document is placed
at the correct position in the N-dimensional term space.
Our goal here is to have the documents on the same
topic placed close together, while those on different
topics placed sufficiently apart. Unfortunately, we often
do not know how to compute terms weights. The sta-
tistical weighting formulas, based on terms distribution
within the database, such as tf.idf, are far from optimal,
and the assumptions of term independence which are
routinely made are false in most cases. This situation
is even worse when single-word terms are intermixed
with phrasal terms and the term independence becomes
harder to justify.

The simplest word-based representations of con-
tent, while relatively better understood, are usually
inadequate since single words are rarely specific
enough for accurate discrimination, and their grouping
is often accidental. A better method is to identify
groups of words that create meaningful phrases, espe-
cially if these phrases denote important concepts in the
database domain. For example, joint venture is an
important term in the Wall Street Journal (WSJ hen-
ceforth) database, while neither joint nor venture is
important by itself. In the retrieval experiments with
the training TREC database, we noticed that both joint
and venture were dropped from the list of terms by the
system because their idf (inverted document frequency)
weights were too low. In large databases, such as TIP-
STER, the use of phrasal terms is not just desirable, it
becomes necessary.

An accurate syntactic analysis is an essential
prerequisite for selection of phrasal terms. Various sta-
tistical methods, e.g., based on word co-occurrences
and mutual information, are prone to high error rates
(sometimes as high as 50%), turning out many
unwanted associations. Similarly, simplistic lexical-

level parsing methods have limited potential, for exam-
ple, identifying noun phrases as sequences of adjectives
and nouns, adds little value to the document representa-
tion beyond what is already provided by the part-of-
speech tagging. Further gains are possible if syntactic
and semantic level dependencies are identified and
represented. Therefore a good, fast parser may be
necessary, as we have demonstrated in previous
TRECs.

The challenge is to obtain ‘‘semantic’’ phrases,
or “‘concepts’’, which would capture underlying seman-
tic uniformity across various surface forms of expres-
sion. Syntactic structures are often reasonable indica-
tors of content, certainly better than ‘statistical phrases’
— where words are grouped solely on the basis of phy-
sical proximity (e.g., "college junior" is not the same as
"junior college™) — however, the creation of compound
terms makes the term matching process more complex
since in addition to the usual problems of lexical mean-
ing, one must deal with structure (e.g., "college junior"
is the same as "junior in college™). In order to deal
with structure, the parser’s output needs to be "normal-
ized" or "regularized" so that complex terms with the
same or closely related meanings would indeed receive
matching representations. One way to regularize syn-
tactic structures is to transform them into operator-
argument form, or at least head-modifier form, as will
be further explained in this paper. In effect, therefore,
we aim at obtaining a semantic representation. This
result has been achieved to a certain extent in our work
thus far.

Do we need to parse indeed? Our recent results
indicate that some of the critical semantic dependencies
can in fact be obtained without the intermediate step of
syntactic analysis, and directly from lexical-level
representation of text. We have applied our noun
phrase disambiguation method directly to word
sequences generated using part-of-speech information,
and the results were most promising. At this time we
have no data how these results compare to those
obtained via parsing.

No matter how we eventually arrive at the com-
pound terms, we hope they would let us to capture
more accurately the semantic content of a document. It
is certainly true that the compound terms such as South
Africa, or advanced document processing, when found
in a document, give us a better idea about the content
of such document than isolated word matches. What
happens, however, if we do not find them in a docu-
ment? This situation may arise for several reasons: (1)
the term/concept is not there, (2) the concept is there
but our system is unable to identify it, or (3) the con-
cept is not explicitly there, but its presence can be
infered using general or domain-specific knowledge.

This is certainly a serious problem, since we now
attach more weight to concept matching than isolated
word matching, and missing a concept can reflect more
dramatically on system’s recall. The inverse is also
true: finding a concept where it really isn’t makes an
irrelevant document more likely to be highly ranked
than with single-word based representation. Thus, while
the rewards maybe greater, the risks are increasing as
well.

One way to deal with this problem is to allow
the system to fall back on partial matches and single
word matches when concepts are not available, and to
use query expansion techniques to supply missing
terms. Unfortunately, thesaurus-based query expansion
is usually quite uneffective, unless the subject domain
is sufficiently narrow and the thesaurus sufficiently
domain-specific. For example, the term natural
language may be considered to subsume a term denot-
ing a specific human language, e.g., English. Therefore,
a query containing the former may be expected to
retrieve documents containing the latter. The same can
be said about language and English, unless language is
in fact a part of the compound term programming
language in which case the association language - For-
tran is appropriate. This is a problem because (a) it is a
standard practice to include both simple and compound
terms in document representation, and (b) term associa-
tions have thus far been computed primarily at word
level (including fixed phrases) and therefore care must
be taken when such associations are used in term
matching. This may prove particularly troublesome for
systems that attempt term clustering in order to create
"meta-terms” to be used in document representation.

In the remainder of this paper we discuss particu-
lars of the present system and some of the observations
made while processing TREC-4 data. While this
description is meant to be self-contained, the reader
may want to refer to previous TREC papers by this
group for more information about the system.

OVERALL DESIGN

Our information retrieval system consists of a
traditional statistical backbone (NIST’s PRISE system;
Harman and Candela, 1989) augmented with various
natural language processing components that assist the
system in database processing (stemming, indexing,
word and phrase clustering, selectional restrictions),
and translate a user’s information request into an
effective query. This design is a careful compromise
between purely statistical non-linguistic approaches and
those requiring rather accomplished (and expensive)
semantic analysis of data, often referred to as ‘concep-
tual retrieval’.

In our system the database text is first processed
with a fast syntactic parser. Subsequently certain types
of phrases are extracted from the parse trees and used
as compound indexing terms in addition to single-word
terms. The extracted phrases are statistically analyzed
as syntactic contexts in order to discover a variety of
similarity links between smaller subphrases and words
occurring in them. A further filtering process maps
these similarity links onto semantic relations (generali-
zation, specialization, synonymy, etc.) after which they
are used to transform a user’s request into a search
query.

The wuser’s natural language request is also
parsed, and all indexing terms occurring in it are
identified. Certain highly ambiguous, usually single-
word terms may be dropped, provided that they also
occur as elements in some compound terms. For exam-
ple, "natural™” is deleted from a query already contain-
ing "natural language" because "natural" occurs in
many unrelated contexts: "natural number”, "natural
logarithm"”, "natural approach”, etc. At the same time,
other terms may be added, namely those which are
linked to some query term through admissible similar-
ity relations. For example, "unlawful activity" is added
to a query (TREC topic 055) containing the compound
term “illegal activity" via a synonymy link between
"illegal™ and "unlawful". After the final query is con-
structed, the database search follows, and a ranked list
of documents is returned. In TREC-4, the automatic
query expansion has been limited to to routing runs,
where we refined our version of massive expansion
using relevenace information wrt. the training database.
Query expansion via automatically generated domain
map was not usd in offical ad-hoc runs.

As in TREC-3, we used a randomized index
splitting mechanism which creates not one but several
balanced sub-indexes. These sub-indexes can be
searched independently and the results can be merged
meaningfully into a single ranking.

Before we proceed to discuss the particulars of
our system we would like to note that all the process-
ing steps, those performed by the backbone system, and
those performed by the natural language processing
components, are fully automated, and no human inter-
vention or manual encoding is required.

FAST PARSING WITH TTP PARSER

TTP (Tagged Text Parser) is based on the
Linguistic String Grammar developed by Sager (1981).
The parser currently encompasses some 400 grammar
productions, but it is by no means complete. The
parser’s output is a regularized parse tree representation
of each sentence, that is, a representation that reflects

the sentence’s logical predicate-argument structure. For
example, logical subject and logical object are
identified in both passive and active sentences, and
noun phrases are organized around their head elements.
The parser is equipped with a powerful skip-and-fit
recovery mechanism that allows it to operate
effectively in the face of ill-formed input or under a
severe time pressure. When parsing the TREC-3 collec-
tion of more than 500 million words, we found that the
parser’s speed averaged between 0.17 and 0.26 seconds
per sentence, or up to 80 words per second, on a Sun’s
SparcStation10. In addition, TTP has been shown to
produce parse structures which are no worse than those
generated by full-scale linguistic parsers when com-
pared to hand-coded Treebank parse trees.

TTP is a full grammar parser, and initially, it
attempts to generate a complete analysis for each sen-
tence. However, unlike an ordinary parser, it has a
built-in timer which regulates the amount of time
allowed for parsing any one sentence. If a parse is not
returned before the allotted time elapses, the parser
enters the skip-and-fit mode in which it will try to "fit"
the parse. While in the skip-and-fit mode, the parser
will attempt to forcibly reduce incomplete constituents,
possibly skipping portions of input in order to restart
processing at a next unattempted constituent. In other
words, the parser will favor reduction to backtracking
while in the skip-and-fit mode. The result of this stra-
tegy is an approximate parse, partially fitted using top-
down predictions. The fragments skipped in the first
pass are not thrown out, instead they are analyzed by a
simple phrasal parser that looks for noun phrases and
relative clauses and then attaches the recovered
material to the main parse structure. Full details of TTP
parser have been described in the TREC-1 report
(Strzalkowski, 1993a), as well as in other works
(Strzalkowski, 1992; Strzalkowski & Scheyen, 1993).

As may be expected, the skip-and-fit strategy will
only be effective if the input skipping can be per-
formed with a degree of determinism. This means that
most of the lexical level ambiguity must be removed
from the input text, prior to parsing. We achieve this
using a stochastic parts of speech tagger to preprocess
the text (see TREC-1 report for details).

WORD SUFFIX TRIMMER

Word stemming has been an effective way of
improving document recall since it reduces words to
their common morphological root, thus allowing more
successful matches. On the other hand, stemming tends
to decrease retrieval precision, if care is not taken to
prevent situations where otherwise unrelated words are
reduced to the same stem. In our system we replaced a

traditional morphological stemmer with a conservative

dictionary-assisted suffix trimmer. 3 The suffix trimmer
performs essentially two tasks: (1) it reduces inflected
word forms to their root forms as specified in the dic-
tionary, and (2) it converts nominalized verb forms
(e.g., "implementation™, "storage") to the root forms of
corresponding verbs (i.e., "implement", “store"). This
is accomplished by removing a standard suffix, e.g.,
"stor+age"”, replacing it with a standard root ending
("+e"), and checking the newly created word against
the dictionary, i.e., we check whether the new root
("store™) is indeed a legal word. Below is a small
example of text before and after stemming.

While serving in South Vietnam, a number of U.S.
Soldiers were reported as having been exposed to
the defoliant Agent Orange. The issue is veterans
entitlement, or the awarding of monetary compen-
sation and/or medical assistance for physical dam-
ages caused by Agent Orange.

serve south vietnam number u.s. soldier expose de-
foliant agent orange veteran entitle award monetary
compensate medical assist physical damage agent
orange

Please note that proper names, such as South Vietnam
and Agent Orange are identified separately through the
name extraction process described below. Note also
that various ‘‘stopwords’’ (e.g., prepositions, conjunc-
tions, articles, etc.) are removed from text.

HEAD-MODIFIER STRUCTURES

Syntactic phrases extracted from TTP parse trees
are head-modifier pairs. The head in such a pair is a
central element of a phrase (main verb, main noun,
etc.), while the modifier is one of the adjunct argu-
ments of the head. In the TREC experiments reported
here we extracted head-modifier word and fixed-phrase
pairs only. While TREC databases are large enough to
warrant generation of larger compounds, we were
unable to verify their effectiveness in indexing, mostly
because of the tight schedule.

Let us consider a specific example from the WSJ
database:

The former Soviet president has been a local hero
ever since a Russian tank invaded Wisconsin.

The tagged sentence is given below, followed by the
regularized parse structure generated by TTP, given in
Figure 1.

3 Dealing with prefixes is a more complicated matter, since
they may have quite strong effect upon the meaning of the resulting
term, e.g., un- usually introduces explicit negation.

The/dt former/jj Soviet/jj president/nn has/vbz
been/vbn a/dt local/jj hero/nn ever/rb since/in a/dt
Russian/jj tank/nn invaded/vbd Wisconsin/np ./per

It should be noted that the parser’s output is a
predicate-argument structure centered around main ele-
ments of various phrases. In Figure 1, BE is the main
predicate (modified by HAVE) with 2 arguments (sub-
ject, object) and 2 adjuncts (adv, sub ord). INVADE is
the predicate in the subordinate clause with 2 argu-
ments (subject, object). The subject of BE is a noun
phrase with PRESIDENT as the head element, two
modifiers (FORMER, SOVIET) and a determiner
(THE). From this structure, we extract head-modifier
pairs that become candidates for compound terms. The
following types of pairs are considered: (1) a head
noun and its left adjective or noun adjunct, (2) a head
noun and the head of its right adjunct, (3) the main
verb of a clause and the head of its object phrase, and
(4) the head of the subject phrase and the main verb.
These types of pairs account for most of the syntactic
variants for relating two words (or simple phrases) into
pairs carrying compatible semantic content. For exam-
ple, the pair retrievetrinformation will be extracted
from any of the following fragments: information

[assert
[[perf [HAVE]]
[[verb [BE]]
[subject
[np
[n PRESIDENT]
[t pos THE]
[adj [FORMER]]
[adj [SOVIETIII]
[object
[np
[n HERO]
[t pos A]
[adj [LOCALI]I]
[adv EVER]
[sub_ord
[SINCE
[[verb [INVADE]]
[subject
[np
[n TANK]
[t pos A]
[adj [RUSSIAN]II]
[object
[np
[name [WISCONSIN]]1111111

Figure 1. Predicate-argument parse structure.

retrieval system; retrieval of information from data-
bases; and information that can be retrieved by a user-
controlled interactive search process. In the example at
hand, the following head-modifier pairs are extracted
(pairs containing low-content elements, such as BE and
FORMER, or names, such as WISCONSIN, will be
later discarded):

PRESIDENT+BE, PRESIDENT+FORMER, PRESIDENT+SOVIET,
BE+HERO, HERO+LOCAL,
TANK+INVADE, TANK+RUSSIAN, INVADE+WISCONSIN

We may note that the three-word phrase former Soviet
president has been broken into two pairs former
president and Soviet president, both of which denote
things that are potentially quite different from what the
original phrase refers to, and this fact may have poten-
tially negative effect on retrieval precision. This is one
place where a longer phrase appears more appropriate.
The representation of this sentence may therefore con-
tain the following terms (along with their inverted
document frequency weights):

PRESIDENT 2.623519
SOVIET 5.416102
PRESIDENT+SOVIET 11.556747
PRESIDENT+FORMER 14.594883
HERO 7.896426
HERO+LOCAL 14.314775
INVADE 8.435012
TANK 6.848128
TANK+INVADE 17.402237
TANK+RUSSIAN 16.030809
RUSSIAN 7.383342
WISCONSIN 7.785689

While generating compound terms we took care to
identify ‘negative’ terms, that is, those whose denota-
tions have been explicitly excluded by negation. Even
though matching of negative terms was not used in
retrieval (nor did we use negative weights), we could
easily prevent matching a negative term in a query
against its positive counterpart in the database by
removing known negative terms from queries. As an
example consider the following fragment from topic
192:

References to the cost of cleanup and number of

people and equipment involved without mentioning

the method are not relevant.

The corresponding compound terms are:

NOT cost cleanup
NOT number equip
NOT number people

Note that while this statement is negated, the negation
is conditioned with the without mentioning ... phrase.
Our NLP module is not able to represent such fine dis-
tinctions at this time.

NOMINAL COMPOUNDS

The notorious ambiguity of nominal compounds
remains a serious difficulty in obtaining head-modifier
pairs of highest accuracy. In order to cope with this,
the pair extractor looks at the distribution statistics of
the compound terms to decide whether the association
between any two words (nouns and adjectives) in a
noun phrase is both syntactically valid and semantically
significant. ~ For example, we may accept
languaget+natural and processing+language from
natural language processing as correct, however,
caset+trading would make a mediocre term when
extracted from insider trading case. On the other hand,
it is important to extract trading+insider to be able to
match documents containing phrases insider trading
sanctions act or insider trading activity. Phrasal terms
are extracted in two phases. In the first phase, only
unambiguous head-modifier pairs are generated, while
all structurally ambiguous noun phrases are passed to
the second phase "as is". In the second phase, the dis-
tributional statistics gathered in the first phase are used
to predict the strength of alternative modifier-modified
links within ambiguous phrases. For example, we may
have multiple unambiguous occurrences of insider trad-
ing, while very few of trading case. At the same time,
there are numerous phrases such as insider trading
case, insider trading legidation, etc., where the pair
insider trading remains stable while the other elements
get changed, and significantly fewer cases where, say,
trading case is constant and the other words change.

The disambiguation procedure is performed after
the first phrase extraction pass in which all unambigu-
ous pairs (noun+noun and noun+adjective) and all
ambiguous noun phrases are extracted. Any nominal
string consisting of three or more words of which at
least two are nouns is deemed structurally ambiguous.
In the Tipster corpus, about 80% of all ambiguous
nominals were of length 3 (usually 2 nouns and an
adjective), 19% were of length 4, and only 1% were of
length 5 or more. The algorithm proceeds in three
steps, as follows:

(1) Assign scores to each of the candidate pairs
X+x; where i>j from the ambiguous noun
phrase x; - - - X,. The score assigned to a candi-
date pair is the sum of the scores for each
occurrence of this pair in any compound nominal
within the training corpus. For each occurrence,
the score is maximum when the words x; and X;
are the only words in the phrase, i.e., we have
unambiguous nominal x;X;, in which case the
score is 1. For longer phrases, for non-adjacent
words, and for pairs anchored at words toward
the left of the compound, the score decreases
proportionately.

(2) For each set Xj={x+xIfori>j} of candidate
pairs rank alternative pairs by their scores.

(3) Disambiguate by selecting the top choice from
each set such that its score is above an empiri-
cally established global threshold, it s
significantly higher than the second best choice
from the set, and it is not significantly lower than
the scores of pairs selected from other sets X;.

The effectiveness of this algorithm can be meas-
ured in terms of recall (the proportion of all valid
head+modifier pairs extracted from ambiguous nomi-
nals), and precision (the proportion of valid pairs
among those extracted). The evaluation was done on a
small sample of randomly selected phrases, and the
algorithm performance was compared to manually
selected correct pairs. The following numbers were
recorded: recall 66% to 71%; precision 88% to 91%,
depending on the size of the training sample. In terms
of the total number of pairs extracted unambiguously
from the parsed text (i.e., those obtained by the pro-
cedure described in the previous section), the disambi-
guation step recovers an additional 10% to 15% of
pairs, all of which were previously thrown out as unre-
coverable. A sample set of ambiguous phrases and
extracted head+modifier pairs is shown in Table 1.

Ambiguous nominal Extracted pairs

oil import fee oil import

import fee

croatian wartime cabinet croatian cabinet

wartime cabinet

national enviromental watchdog group national group
enviromental group

watchdog group

current export subsidy program current program
export subsidy

subsidy program

gas operating and maintaining expenses | **gas operating

operating expenses

maintaining expenses

Table 1. Ambiguous nominals and extracted pairs.

EXTRACTING PROPER NAMES

Proper names, of people, places, events, organi-
zations, etc., are often critical in deciding relevance of

a document. Since names are traditionally capitalized
in English text, spotting them is relatively easy, most
of the time. Many names are composed of more than a
single word, in which case all words that make up the
name are capitalized, except for prepositions and such,
e.g., The United Sates of America. It is important that
all names recognized in text, including those made up
of multiple words, e.g., South Africa or Social Security,
are represented as tokens, and not broken into single
words, e.g., South and Africa, which may turn out to be
different names altogether by themselves. On the other
hand, we need to make sure that variants of the same
name are indeed recognized as such, eg., U.S
President Bill Clinton and President Clinton, with a
degree of confidence. One simple method, which we
use in our system, is to represent a compound name
dually, as a compound token and as a set of single-
word terms. This way, if a corresponding full name
variant cannot be found in a document, its component
words matches can still add to the document score. A
more accurate, but arguably more expensive method
would be to use a substring comparison procedure to
recognize variants before matching.

In our system names are identified by the parser,
and then represented as strings, e.g., south+africa. The
name recognition procedure is extremely simple, in fact
little more than the scanning of successive words
labeled as proper names by the tagger (np and nps
tags). Single-word names are processed just like ordi-
nary words, except for the stemming which is not
applied to them. We also made no effort to assign
names to categories, e.g., people, companies, places,
etc., a classification which is useful for certain types of
queries (e.g., To be relevant a document must identify a
specific generic drug company). A more advanced
recognizer is planned for TREC-4 evaluation. In the
TREC-3 database, compound names make up about 8%
of all terms generated. A small sample of compound
names extracted is listed below:

right+wing+christian+fundamentalism
u.s+constitution

gun+control+legislation
national+railroad+transportation+corporation
superfund+hazardous+waste+cleanup+programme
u.s+government

united+states

exxon+valdez

dow_corning+corporation
chairman+julius+d+winer

new-+york

wall+street+journal
mcdonnell+douglas+corp+brad+beaver
soviet+georgia

rebel+leader+savimbi

plo+leader+arafat

suzuki+samurai+soft_top+4wd
honda+civic

richard+j+rosebery

mr+rosebery
international+business+machine+corp
cytomegalovirus+retinitis
ids+financial+service+analyst+g+michael+kennedy
senate+judiciary+committee
first+fidelity+bank+n.a+south+jersey
eastern+u.s
federal+national+mortgage+association
canadian-+airline+international

CREATING AN INDEX

The limited amount of resources that we had
available for indexing forced us to devise a method that
splits the collection randomly and produces several
sub-indexes. This method would allow us now to
index even larger collections in reasonable times. The
preliminary tests that we carried out in order to com-
pare the performance of systems where the collection is
split into N sub-indexes, for different values of N, sug-
gest that a collection can be split into at least 7 sub-
indexes without seeing any degradation in the perfor-
mance. Given the results that we obtained from such
tests as well as the fact that the tests were carried out
using relatively small collections (about 150 Mega-
bytes) we intend to perform more extensive testing as
soon as possible.

One of the problems we had to face for TREC-1
and TREC-2 was that we did not have enough real
memory to index the complete collection (category A)
in a reasonable time . Even indexing only the collec-
tion for category B (550 megabytes for the ad-hoc
experiments) used to take 2 weeks, or about 330 hours.
This was more slow than the times that could be
obtained by other versions of the PRISE system that
were already available by that time. We used a slower
version because we did not have then enough main
memory to use the faster one. The faster version
grows the word frequency tree in main memory, and it
is the physical memory that matters here, not the vir-
tual memory, since a tree larger than the size of the
real memory causes so many page faults that perfor-
mance becomes unacceptably slow.

The version of the PRISE system that we used
for TREC-3 and TREC-4 is much faster than previous
versions. According to the on-line documentation pro-
vided by NIST the old system would take about 67
hours to index 276 Megabytes of WSJ material while
the new system takes less than 2 hours to index the
same material. Still, we did not have enough main
memory to use the new system to index the complete

collection. Our solution to this problem was to split
the collection into N sets of almost equal number of
documents and create a separate sub-index for each set.
In order to keep the N sub-indexes balanced with
respect to each other (so that the term idfs are compar-
able across sub-indexes, for example) we split the col-
lection randomly into N sets. This is done by assign-
ing each document to one of the N sets selected at ran-
dom. Our goal was to build N sets that would be as
homogeneous as possible. At retrieval time the same
query is submitted to each one of the sub-indexes and a
separate list of ranked documents is obtained for each
index. Since we expect idfs to be comparable across
sub-indexes, it makes sense to compare the scores of
documents belonging to different sub-indexes. The
result of the query is then the set of documents with
the highest scores chosen from the union of all lists of
ranked documents.

In order to evaluate this technique we ran a
series of experiments involving about 50000 records.
We split that collection into N sets for several values
of N (from 1 to 7) and made some measurements of
parameters that we expected to be indicators of the
degree of homogeneity (e.g., standard deviation of the
total number of terms per index, standard deviation of
the maximum idf, standard deviation of the number of
unique terms, and others). As expected, these indica-
tors showed a decreasing level of homogeneity as N
grows larger. This information is summarized in Table
3.

For each value of N, we evaluated the perfor-
mance of the system using a series of queries for which
NIST had provided relevance judgments. For the
weighting scheme we were using, and the small collec-
tion used for these preliminary experiments, we

No. of | Max-Mem | Max-idf | Unig.terms | Unig.terms
indexes MB Yostd Mean %std

1 81.9 0.000 921253 0.000

2 61.2 0.424 600869 1.006

3 54.7 0.902 438992 11.678

4 48.2 0.555 373249 3.095

5 46.0 0.986 314986 6.356

6 44.1 1.080 279261 7.318

7 46.8 2.432 247606 16.475

Table 3. Statistics of index splitting performed on a subset of
Tipster AP88 subcollection consisting of 48,770 records (about 230
MBytes).

observed that the performance actually peaks at N = 4
(the average precision when N was 4 was about 7%
better than when N was 1). We thought that these
results were promising enough to justify the use of the
technique described in order to index the complete col-
lection but we intend to perform a much more careful
and complete series of experiments as soon as the time
and the resources are available. Table 4 summarizes
the system’s performance at various levels of index
split with a subset of AP subcollection.

For TREC-4 we used 7 sub-indexes for the ad-
hoc experiments (2200 Megabytes) and 5 for the rout-
ing part (1600 Megabytes). We chose these numbers
because, in each case, it was the smallest number of
sub-indexes that we could handle given our resources.
A nice side-effect of this technique is that each index
can be created in parallel on a different machine, mak-
ing the total time required even shorter. The parameters
of the 7-way split used in indexing the TREC-4 ad-hoc
database are listed in Table 5. The reader may notice
that the split is not particularly well balanced, which
may be contrasted with a uniform 4-way split used in
TREC-3 (cf. TREC-3 proceedings). This may have
contributed to a somewhat weaker performance this
year.

TERM WEIGHTING ISSUES

Finding a proper term weighting scheme is criti-
cal in term-based retrieval since the rank of a docu-
ment is determined by the weights of the terms it
shares with the query. One popular term weighting
scheme, known as tf.idf, weights terms proportionately
to their inverted document frequency scores and to
their in-document frequencies (tf). The in-document

No. of | Avg Prec R-Prec Recall

indexes | %change | %change | %change
1 0.00 0.00 0.00
2 +4.04 +1.85 +1.11
3 +4.63 +0.72 +0.81
4 +7.04 +4.53 +2.59
5 +1.68 +4.08 +3.92
6 +5.68 +2.75 +4.29
7 +4.18 +4.45 +4.36

Table 4. Performance statistics for split index performed on
a subset of Tipster AP88 subcollection consisting of 48,770 records
(about 230 MBytes).

Index | Postings | Dict. | Max-idf | Records | Unig.terms
No. MB MB
1 60.05 31.08 17.256 78296 1426574
2 55.25 26.57 17.262 78601 1234205
3 57.69 31.10 17.206 75600 1425545
4 66.64 35.34 17.312 81400 1603649
5 60.16 30.40 17.324 82044 1394983
6 59.18 27.83 17.354 83807 1282712
7 65.47 3333 | 17.419 87652 1529695

Table 5. Statistics of the 7-way split index created for ad-hoc
database from Tipster Disks 2 and 3 (about 2 GBytes).

frequency factor is usually normalized by the document
length, that is, it is more significant for a term to occur
5 times in a short 20-word document, than to occur 10

times in a 1000-word article.*

In our official TREC runs we used the normal-
ized tf.idf weights for all terms alike: single ‘ordinary-
word’ terms, proper names, as well as phrasal terms
consisting of 2 or more words. Whenever phrases were
included in the term set of a document, the length of
this document was increased accordingly. This had the
effect of decreasing tf factors for ‘regular’ single word
terms.

A standard tfidf weighting scheme (and we
suspect any other uniform scheme based on frequen-
cies) is inappropriate for mixed term sets (ordinary
concepts, proper names, phrases) because:

(1) It favors terms that occur fairly frequently in a
document, which supports only general-type
queries (e.g., "all you know about ‘star wars™).
Such queries are not typical in TREC.

(2) It attaches low weights to infrequent, highly
specific terms, such as names and phrases, whose
only occurrences in a document often decide of
relevance. Note that such terms cannot be reli-
ably distinguished using their distribution in the
database as the sole factor, and therefore syntac-
tic and lexical information is required.

(3) It does not address the problem of inter-term
dependencies arising when phrasal terms and
their component single-word terms are all

4 This is not always true, for example when all occurrences of
a term are concentrated in a single section or a paragraph rather than
spread around the article. See the following section for more discus-
sion.

included in a document representation, i.e.,
launch+ satellite and satellite are not independent,
and it is unclear whether they should be counted
as two terms.

In our post-TREC-2 experiments we considered
(1) and (2) only. We changed the weighting scheme so
that the phrases (but not the names which we did not
distinguish in TREC-2) were more heavily weighted by
their idf scores while the in-document frequency scores
were replaced by logarithms multiplied by sufficiently
large constants. In addition, the top N highest-idf
matching terms (simple or compound) were counted
more toward the document score than the remaining
terms. This ‘hot-spot’ retrieval option is discussed in
the next section.

Schematically, these new weights for phrasal and
highly specific terms are obtained using the following
formula, while weights for most of the single-word
terms remain unchanged:

weight (T,)=(C,*log (tf)+C,* o(N i))*idf

In the above, o(N,i) is 1 for i<N and is O otherwise.
The o(N,i) factor realizes our notion of ‘*hot spot™
matching, where only top N matches are used in com-
puting the document score. This creates an effect of
““locality’’, somewhat similar to that achieved by
passage-level retrieval (e.g., Callan, 1994). In TREC-3,
where this weighing scheme was fully deployed for the
first time, it proved very useful for sharpening the
focus of long, frequently convoluted queries. In
TREC-3 where the query length ranged from 20 to
100+ valid terms, setting N to 15 or 20 (including
phrasal concepts) typically lead to a precision gain of
about 20%. In TREC-4, the average query length is
less than 10 terms, which we considered too short for
using locality matching, and this part of the weighting
scheme was in effect unused in the official runs. This
turned out to be a mistake, as we rerun TREC-4 experi-
ments after the conference, only to find out that our
results improved visibly when the locality part of the
weighting scheme was restored.

The table below illustrates the effect of new
weighting scheme for phrasal terms using topic 101
(from TREC-2) and a relevant document (WSJ870226-
0091).

Topic 101 matches WSJ870226-0091
duplicate terms not shown

TERM TF.IDF NEW WEIGHT
sdi 1750 1750
eris 3175 3175
star 1072 1072
wars 1670 1670

laser 1456 1456

weapon 1639 1639

missile 872 872

space+base 2641 2105
interceptor 2075 2075
exoatmospheric 1879 3480
system+defense 2846 2219
reentry+vehicle 1879 3480
initiative+defense 1646 2032
system+interceptor 2526 3118
DOC RANK 30 10

Changing the weighting scheme for compound terms,
along with other minor improvements (such as expand-
ing the stopword list for topics) has lead to the overall
increase of precision of 20% to 25% over our baseline
results in TREC-3.

SUMMARY OF RESULTS

The bulk of the text data used in TREC-4 has
been previously processed for TREC-3 (about 3.3
GBytes). Routing experiments involved some additional
new text (about 500 MBytes), which we processed
through our NLP module. The parameters of this pro-
cess were essentially the same as in TREC-3, and an
interested reader is referred to our TREC-3 paper. Two
types of retrieval have been done: (1) new topics 201-
250 were run in the ad-hoc mode against the Disk-2&3
database,® and (2) topics 3-191 (a selection of 50 topics
in this range), previously used in TREC-1 to TREC-3,
were run in the routing mode against the Disk-1 data-
base plus the new data including material from Federal
Register, IR Digest and Internet newsgroups. In each
category 2 official runs were performed, with different
set up of system’s parameters. These runs were labeled
nyugel and nyuge2, for the routing runs, and nyuge3
and nyuge4 for adhoc runs. Both routing runs were
automatic, with massive query expansion. Massive
query expansion has been implemented as an automatic
feedback mode using known relevance judgements for
these topics with respect TREC-3 database. The adhoc
runs were performed in automatic and manual modes,
with nyuge3 being fully automatic, and nyuge4 using
manual query expansion before search.

The purpose of the experiments we conducted
this year was to find out if some techniques used by
other researchers in the past (e.g., massive query
expansion) would work well using our NLP techniques.
The experiments we tried were the following:

(1) Routing experiment using massive expansion (the
official routing run).

5 Actually, only 49 topics were used in evaluation, since
relevance judgements were unavailable for topic 201 due to an error.

(2) Ad-hoc experiment using terms added manually
without previous knowledge of the documents
(the official ad-hoc manual run).

(3) Ad-hoc experiment using terms selected by a
user from documents found in the collection (an
un-official ad-hoc semi-interactive run).

Manual ad-hoc experiments. The topics for
TREC-4 were much smaller than in previous TREC’s.
Since our system depends on information obtained by
processing the text of the topics, we decided to add
text manually. The text added consisted of grammati-
cally correct expressions that we hoped would generate
phrases found in relevant documents. The extra text
was added without first seeing the documents and rely-
ing only on the domain knowledge that the person
adding the text might already have. No more than 2
minutes was spend to add text to any query. The
results are summarized in Table 6. Notice that the ord-
ering of the experiments with respect to precision is as
we expected.

(Semi-)Interactive query expansion ad-hoc exper-
iments. For this experiment we expanded the topics
using text taken from the documents. This has been
done as follows: a user submited a query and the
search was run. The user then reviewed the first two
pages of a number of the retrieved documents, and
selected phrases from the document’s text to be added
to the topic. The text added was always full, grammat-
ically correct expressions. The augmented topic were
then resubmited to the system for another
process/search cycle. No more than 3 cycles were
used. The user spent less than 20 minutess per topic. It
should be noted that this expansion did not involve the
traditional relevance feedback where terms are added
and reweighted based on their distribution in relevant
and non-relevant sets (e.g., Roccio formula). Instead,
entire phrases and sentences were added, if they
appeared to be good extension of the query, which can
be considered a natural elaboration of the ‘‘off-the-
top-of-your-head’” manual expansion described above.
We expect that the same effect could be obtained by
expanding the query using a training collection (e.g.,
Disk 1) different from the retrieval collection, in which
case these runs would qualify as manual.

Locality runs. Following the official evaluation,
we rerun all adhoc tests using the full scoring scheme
that included the locality factor with N=20. The results
turned out to be visibly better than the official runs,
and the summary is given in Table 8. We also compare
the locality-enhanced runs with and without phrase
matching in Table 9.

Routing experiments. The relevance judgements
for the routing queries wrt. the archival data were used
to produce a table with 6 columns which contained the

following information:
(1) query number
(2) term taken from the text of the documents

(3) rcount: number of documents that contained the
term and were judged relevant.

(4) rtot: total number of documents that were judged
relevant.

(5) ncount: number of documents that contained the
term and that were judged not relevant.

(6) ntot total number of documents judged not
relevant for the corresponding query number.

The weight of each term was computed using the fol-
lowing formula:

weight =(rcount /rtot)/(ncount /ntot)°

Summary statistics for routing runs are shown in
Table 7. All runs shown in this table use massive
query expansion.

In general, we can note substantial improvement
in performance when phrasal terms are used, especially
in ad-hoc runs. Looking back at TREC-2 and TREC-3
one may observe that these improvements appear to be
tied to the length and specificity of the query: the
longer the query, the more improvement from linguistic
processes. This can be seen comparing the improve-
ment over baseline for automatic adhoc runs (very
short queries), for manual runs (longer queries), and for
semi-interactive runs (yet longer queries). In addition,
our TREC-3 results (with long and detailed queries)
showed 20-25% improvement in precision attributed to
NLP, as compared to 10-16% in TREC-4. At this time
we are unable to explain the much smaller improve-
ments in routing evaluations: while the massive query
expansion definitely works, NLP has hard time topping
these improvements.

CONCLUSIONS

We presented in some detail our natural language
information retrieval system consisting of an advanced
NLP module and a ‘pure’ statistical core engine.
While many problems remain to be resolved, including
the question of adequacy of term-based representation
of document content, we attempted to demonstrate that
the architecture described here is nonetheless viable. In
particular, we demonstrated that natural language pro-
cessing can now be done on a fairly large scale and
that its speed and robustness has improved to the point

6 Our experiments have shown that this formula may be more
effective than the traditional Roccio expansion method (see eg.,
Frakes & Baeza-Yates, 1992).

where it can be applied to real IR problems. We sug-
gest, with some caution until more experiments are run,
that natural language processing can be very effective
in creating appropriate search queries out of user’s ini-
tial specifications which can be frequently imprecise or
vague. An encouraging thing to note is the sharp
increase of precision near the top of the ranking. This
indicates a higher than average concentration of
relevant documents in the first 10-20 documents
retrieved, which can leverage further gains in perfor-
mance via an automatic feedback process. This should
be our focus in TREC-5.

At the same time it is important to keep in mind
that the NLP techniques that meet our performance
requirements (or at least are believed to be approaching
these requirements) are still fairly unsophisticated in
their ability to handle natural language text. In particu-
lar, advanced processing involving conceptual structur-
ing, logical forms, etc., is still beyond reach, computa-
tionally. It may be assumed that these advanced tech-
niques will prove even more effective, since they
address the problem of representation-level limits; how-
ever the experimental evidence is sparse and neces-
sarily limited to rather small scale tests.

ACKNOWLEDGEMENTS

We would like to thank Donna Harman of NIST
for making her PRISE system available to us. Will
Rogers provided valuable assistance in installing
updated versions of PRISE at NYU. We would also
like to thank Ralph Weischedel and Constantine
Papageorgiou of BBN for providing and assisting in the
use of the part of speech tagger. This paper is based
upon work supported by the Advanced Research Pro-
jects Agency under Contract N00014-90-J-1851 from
the Office of Naval Research, under ARPA’s Tipster
Phase-2 Contract 94-FI57900-000, and the National
Science Foundation under Grant IRI-93-02615.

REFERENCES

Broglio, John and W. Bruce Croft. 1993. “‘Query Pro-
cessing for Retrieval from Large Text Bases.”
Proceedings of ARPA HLT Workshop, March 21-
24, Plainsboro, NJ.

Church, Kenneth Ward and Hanks, Patrick. 1990.
““Word association norms, mutual information, and
lexicography.”” Computational Linguistics, 16(1),
MIT Press, pp. 22-29.

Crouch, Carolyn J. 1988. *‘“A cluster-based approach
to thesaurus construction.”” Proceedings of ACM
SIGIR-88, pp. 309-320.

Run abase | nyuge3 | mbase | nyuge4 ibase inlp
Queries 49 49 49 49 49 49
Tot number of docs over all queries
Ret 46550 | 46997 | 49000 | 48982 | 49000 | 49000
Rel 6501 6501 6501 6501 6501 6501
RelRet 2458 2493 3410 3536 3476 3692
%chg +1.4 +39.0 +44.0 +41.0 +50.0
Recall Precision
0.00 0.5296 | 0.6646 | 0.7447 | 0.7377 | 0.8103 | 0.8761
0.10 0.3339 | 0.3733 | 0.4650 | 0.5130 | 0.5423 | 0.5773
0.20 0.2586 | 0.2737 | 0.3724 | 0.4022 | 0.4077 | 0.4464
0.30 0.1939 | 0.1971 | 0.2997 | 0.3304 | 0.3233 | 0.3625
0.40 0.1585 | 0.1641 | 0.2494 | 0.2756 | 0.2740 | 0.3054
0.50 0.1073 | 0.1094 | 0.1714 | 0.1982 | 0.2073 | 0.2391
0.60 0.0831 | 0.0824 | 0.1270 | 0.1363 | 0.1417 | 0.1669
0.70 0.0531 | 0.0505 | 0.0913 | 0.0944 | 0.0968 | 0.1082
0.80 0.0253 | 0.0233 | 0.0509 | 0.0558 | 0.0462 | 0.0499
0.90 0.0058 | 0.0007 | 0.0141 | 0.0201 | 0.0111 | 0.0183
1.00 0.0000 | 0.0000 | 0.0030 | 0.0034 | 0.0006 | 0.0006
Average precision over all rel docs
Avg 0.1394 | 0.1501 | 0.2082 | 0.2272 | 0.2356 | 0.2605
%chg +7.7 +49.0 +63.0 +69.0 +87.0
Precision at
5 docs 0.3755 | 0.4286 | 0.5020 | 0.5469 | 0.5837 | 0.6571
10 doc | 0.3408 | 0.3918 | 0.4510 | 0.4735 | 0.5510 | 0.5898
15doc | 0.3088 | 0.3619 | 0.4082 | 0.4354 | 0.4857 | 0.5333
20 doc | 0.2857 | 0.3276 | 0.3745 | 0.4163 | 0.4429 | 0.4847
30doc | 0.2483 | 0.2939 | 0.3503 | 0.3735 | 0.4014 | 0.4333
100 do | 0.1624 | 0.1802 | 0.2451 | 0.2545 | 0.2624 | 0.2794
200 do | 0.1211 | 0.1315 | 0.1804 | 0.1912 | 0.1869 | 0.2024
500 do | 0.0745 | 0.0770 | 0.1069 | 0.1125 | 0.1107 | 0.1189
1000 d | 0.0502 | 0.0509 | 0.0696 | 0.0722 | 0.0709 | 0.0753
R-Precision (after RelRet)
Exact 0.1966 | 0.2088 | 0.2619 | 0.2780 | 0.2834 | 0.3033
%chg +6.2 +33.0 +41.0 +44.0 +54.0

Table 6. Ad-hoc runs with queries 202-250: (1) abase - automatic run
with statistical terms only; (2) nyuge3 - automatic run with phrases
and names; (3) mbase - queries manually expanded, but no phrases;
(4) nyuge4 - manual run with phrases; (5) ibase - semi-interactive run,
no phrases; (6) inlp - semi-interactive with phrases.

Run base xbase nyugel nyuge2
Queries 50 50 50 50
Tot number of docs over all queries
Ret 50000 50000 50000 50000
Rel 6576 6576 6576 6576
RelRet 3641 4967 5078 5112
%chg +36.0 +39.0 +40.0
Recall (interp) Precision Averages
0.00 0.5715 0.7420 0.7483 0.7641
0.10 0.3530 0.4898 0.5114 0.5236
0.20 0.2851 0.4220 0.4453 0.4491
0.30 0.2378 0.3614 0.3770 0.3857
0.40 0.1993 0.3145 0.3290 0.3398
0.50 0.1679 0.2730 0.2823 0.2876
0.60 0.1201 0.2285 0.2397 0.2469
0.70 0.0845 0.1701 0.1893 0.1910
0.80 0.0387 0.1263 0.1358 0.1372
0.90 0.0234 0.0652 0.0683 0.0711
1.00 0.0033 0.0067 0.0074 0.0070
Average precision over all rel docs
Avg 0.1697 0.2715 0.2838 0.2913
%chg +60.0 +67.0 +72.0
Precision at
5 docs 0.3760 0.5480 0.5560 0.5680
10 docs 0.3680 0.4840 0.5000 0.5220
15 docs 0.3427 0.4680 0.4880 0.4933
20 docs 0.3240 0.4650 0.4680 0.4800
30 docs 0.3053 0.4447 0.4600 0.4680
100 docs 0.2314 0.3550 0.3658 0.3726
200 docs 0.1791 0.2790 0.2886 0.2931
500 docs 0.1142 0.1655 0.1701 0.1718
1000 docs | 0.0728 0.0993 0.1016 0.1022
R-Precision (after Rel)
Exact 0.2189 0.3100 0.3112 0.3191
%chg +42.0 +42.0 +46.0

Table 7. Automatic routing runs with 50 queries from 3-191 range:
(1) base - statistical terms only, no expansion; (2) xbase - base run
with massive expansion, no phrases; (3) nyugel - syntactic phrases,
names, with massive query expansion of up to 500 new terms per
query; (4) nyuge2 - same as 3 but query expansion limited to 200

new terms per query.

Run abase aloc mbase mloc ibase iloc

Queries 49 49 49 49 49 49

Tot number of docs over all querie

1]

Ret 46550 | 47013 | 49000 | 49000 | 49000 | 49000

Rel 6501 6501 6501 6501 6501 6501

RelRet 2458 2498 3410 3545 3476 3723

%chg +1.6 +39.0 +44.0 +41.0 +51.0
Recall Precision

0.00 0.5296 | 0.6923 | 0.7447 | 0.7525 | 0.8103 | 0.9071
0.10 0.3339 | 0.3702 | 0.4650 | 0.5326 | 0.5423 | 0.6039
0.20 0.2586 | 0.2821 | 0.3724 | 0.4138 | 0.4077 | 0.4706
0.30 0.1939 | 0.2207 | 0.2997 | 0.3487 | 0.3233 | 0.3936
0.40 0.1585 | 0.1742 | 0.2494 | 0.2941 | 0.2740 | 0.3268
0.50 0.1073 | 0.1345 | 0.1714 | 0.2239 | 0.2073 | 0.2578
0.60 0.0831 | 0.0918 | 0.1270 | 0.1513 | 0.1417 | 0.1836
0.70 0.0531 | 0.0565 | 0.0913 | 0.1027 | 0.0968 | 0.1178
0.80 0.0253 | 0.0295 | 0.0509 | 0.0641 | 0.0462 | 0.0577
0.90 0.0058 | 0.0006 | 0.0141 | 0.0292 | 0.0111 | 0.0227
1.00 0.0000 | 0.0000 | 0.0030 | 0.0045 | 0.0006 | 0.0020

Average precision over all rel docs

Avg 0.1394 | 0.1592 | 0.2082 | 0.2424 | 0.2356 | 0.2767
%chg +14.0 +49.0 +74.0 +69.0 +98.0
Precision at

5 docs 0.3755 | 0.4571 | 0.5020 | 0.5592 | 0.5837 | 0.6694
10 doc | 0.3408 | 0.3939 | 0.4510 | 0.4816 | 0.5510 | 0.6082
15doc | 0.3088 | 0.3687 | 0.4082 | 0.4490 | 0.4857 | 0.5633
20 doc | 0.2857 | 0.3378 | 0.3745 | 0.4286 | 0.4429 | 0.5133
30 doc | 0.2483 | 0.3075 | 0.3503 | 0.3925 | 0.4014 | 0.4537
100 do | 0.1624 | 0.1927 | 0.2451 | 0.2720 | 0.2624 | 0.2978
200 do | 0.1211 | 0.1394 | 0.1804 | 0.2051 | 0.1869 | 0.2124
500 do | 0.0745 | 0.0798 | 0.1069 | 0.1176 | 0.1107 | 0.1240
1000d | 0.0502 | 0.0510 | 0.0696 | 0.0723 | 0.0709 | 0.0760

R-Precision (after RelRet)

Exact 0.1966 | 0.2211 | 0.2619 | 0.2934 | 0.2834 | 0.3205
%chg +12.0 +33.0 +49.0 +44.0 +63.0

Table 8. Ad-hoc runs with queries 202-250: (1) abase - automatic run
with statistical terms only; (2) aloc - automatic run with phrases and
names and locality factor set at N=20; (3) mbase - run with queries
manually expanded, but no phrases; (4) mloc - manual run with
phrases and locality N=20; (5) ibase - semi-interactive run, no
phrases; (6) iloc - semi-interactive run with phrases, locality N=20.

no pairs | with pairs | % change
Automatic (no locality)
avg prec 0.1394 0.1501 7.68
prec at 10 | 0.3339 0.3733 11.78
Automatic (with locality)
avg prec 0.1555 0.1592 2.38
prec at 10 | 0.3434 0.3702 7.80
Manual (no locality)
avg prec 0.2082 0.2272 9.13
prec at 10 | 0.4650 0.5130 10.32
Manual (with locality)
avg prec 0.2252 0.2424 7.64
prec at 10 | 0.4843 0.5326 9.97
Semi-Interactive (no locality)
avg prec 0.2372 0.2626 10.71
prec at 10 | 0.5471 0.5843 6.80
Semi-Interactive (with locality)
avg prec 0.2533 0.2767 9.24
prec at 10 | 0.5679 0.6039 6.34

Table 9. Effect of locality weighting in adhoc runs.

Frakes, William, B. and Ricardo Baeza-Yates. (eds).
1992. Information Retrieval Prentice-Hall, Engle-
wood Cliffs, NJ.

Grefenstette, Gregory. 1992. *‘Use of Syntactic Con-
text To Produce Term Association Lists for Text
Retrieval.”” Proceedings of SIGIR-92, Copenhagen,
Denmark. pp. 89-97.

Grishman, Ralph, Lynette Hirschman, and Ngo T.
Nhan. 1986. ‘‘Discovery procedures for sub-
language selectional patterns: initial experiments’’.
Computational Linguistics, 12(3), pp. 205-215.

Grishman, Ralph and Tomek Strzalkowski. 1991.
“Information Retrieval and Natural Language Pro-
cessing.”” Position paper at the workshop on Future
Directions in Natural Language Processing in Infor-
mation Retrieval, Chicago.

Harman, Donna. 1988. ‘‘Towards interactive query
expansion.”” Proceedings of ACM SIGIR-88, pp.
321-331.

Harman, Donna and Gerald Candela. 1989. ‘‘Retriev-
ing Records from a Gigabyte of text on a Minicom-
puter Using Statistical Ranking.”” Journal of the
American Society for Information Science, 41(8),
pp. 581-589.

Hindle, Donald. 1990. “‘Noun classification from
predicate-argument structures.”” Proc. 28 Meeting of
the ACL, Pittsburgh, PA, pp. 268-275.

Kwok, K.L., L. Papadopoulos and Kathy Y.Y. Kwan.

1993. “‘Retrieval Experiments with a Large Collec-
tion using PIRCS.”” Proceedings of TREC-1 confer-
ence, NIST special publication 500-207, pp. 153-
172.

Lewis, David D. and W. Bruce Croft. 1990. ““Term
Clustering of Syntactic Phrases’”. Proceedings of
ACM SIGIR-90, pp. 385-405.

Meteer, Marie, Richard Schwartz, and Ralph
Weischedel. 1991. "Studies in Part of Speech
Labeling." Proceedings of the 4th DARPA Speech
and Natural Language Workshop, Morgan-Kaufman,
San Mateo, CA. pp. 331-336.

Sager, Naomi. 1981. Natural Language Information
Processing. Addison-Wesley.

Sparck Jones, Karen. 1972. “‘Statistical interpretation
of term specificity and its application in retrieval.”
Journal of Documentation, 28(1), pp. 11-20.

Sparck Jones, K. and E. O. Barber. 1971. “‘What
makes automatic keyword classification effective?’’
Journal of the American Society for Information
Science, May-June, pp. 166-175.

Sparck Jones, K. and J. I. Tait. 1984. ‘‘Automatic
search term variant generation.”” Journal of Docu-
mentation, 40(1), pp. 50-66.

Strzalkowski, Tomek and Barbara Vauthey. 1991.
‘““Fast Text Processing for Information Retrieval.”
Proceedings of the 4th DARPA Speech and Natural
Language Workshop, Morgan-Kaufman, pp. 346-
351.

Strzalkowski, Tomek and Barbara Vauthey. 1992.
““Information Retrieval Using Robust Natural
Language Processing.”” Proc. of the 30th ACL
Meeting, Newark, DE, June-July. pp. 104-111.

Strzalkowski, Tomek. 1992, ““TTP: A Fast and Robust
Parser for Natural Language.”” Proceedings of the
14th International Conference on Computational
Linguistics (COLING), Nantes, France, July 1992.
pp. 198-204.

Strzalkowski, Tomek. 1993. “‘Natural Language Pro-
cessing in Large-Scale Text Retrieval Tasks.”
Proceedings of the First Text REtrieval Conference
(TREC-1), NIST Special Publication 500-207, pp.
173-187.

Strzalkowski, Tomek. 1993. “‘Robust Text Processing
in Automated Information Retrieval.”” Proc. of
ACL-sponsored workshop on Very Large Corpora.
Ohio State Univ. Columbus, June 22.

Strzalkowski, Tomek and Jose Perez-Carballo. 1994.
““Recent Developments in Natural Language Text
Retrieval.”” Proceedings of the Second Text
REtrieval Conference (TREC-2), NIST Special Pub-
lication 500-215, pp. 123-136.

Strzalkowski, Tomek, Jose Perez-Carballo and Mihnea
Marinescu. 1995. “‘Natural Language Information
Retirieval: TREC-3 Report.”” Proceedings of the

Third Text REtrieval Conference (TREC-3), NIST
Special Publication 500-225, pp. 39-53.

Strzalkowski, Tomek. 1995. “*Natural Language Infor-
mation Retrieval’’ Information Processing and
Management, Vol. 31, No. 3, pp. 397-417.
Pergamon/Elsevier.

Strzalkowski, Tomek, and Peter Scheyen. 1993. “‘An
Evaluation of TTP Parser: a preliminary report.”’
Proceedings of International Workshop on Parsing
Technologies (IWPT-93), Tilburg, Netherlands and
Durbuy, Belgium, August 10-13.

